Optimal 3D Point Clouds from Mobile Laser Scanning

The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single eye, complete with iris and pupil.

Thus, the image is called "Self Portrait with Duckling".

Prof. Dr. Andreas Nüchter

About this talk...

a service and the service of the ser

Outline

- Introduction
- 3D Mapping with Mobile Robots
- Mobile Laser Scanning
 - Calibration
 - Semi-rigid Scan Matching
 - **Conclusion and Outlook**

Outline

- Introduction
- 3D Mapping with Mobile Robots
- Mobile Laser Scanning
 - Calibration
 - Semi-rigid Scan Matching
 - **Conclusion and Outlook**

The Ariadne Robot (2002/2003)

First, we used the 3D information for obstacle avoidance. Later of we did initial 3D mapping experiments.

The motion of the robot 3 DoF

(Video Crash) (Video NoCrash)

The Mobile Robot Irma3D (since 2010)

Automation of 3D scanning

(video) (video)

Combination of terrestrial / kinematic laser scanning

Outline

- Introduction
- 3D Mapping with Mobile Robots
- Mobile Laser Scanning
 - Calibration
 - Semi-rigid Scan Matching
 - **Conclusion and Outlook**

Robotics and Telematics

9

The ICP Algorithm

Put two independent scans into one frame of Scan registration reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set M ("model set") and data set D

- Select point correspondences 1.
- 2. Minimize for rotation **R**, translation t

$$E(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_i + \mathbf{t})||^2$$

3 Iterate 1. and 2.

ulius-Maximilians-

Four closed form solution for the minimization

works in 3 translation plus 3 rotation dimensions

3D Mapping Examples

CMU 3D mapping of abandoned mines

UNIVERSITÄT

WÜRZBURG

RoboCup Rescue

3D reconstruction in the context of medical imaging

The globalgo RtAlgorithm

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set *M* ("model set") and data set *D*

- 1. Select point correspondences
- 2. Minimize for rotation R, translation t

$$E(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_i + \mathbf{t})||^2$$

3. Iterate 1. and 2.

Four closed form solution for the minimization

Global consistent registration

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j}\mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k}\mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

Example of high-precise registrations

Riegl Laser Measurement GmbH

(Video courtesy of Riegl)

(Video 1) (Video 2) (Video 3)

Closed Loop Detection and Global Relaxation

6D SLAM – Full Example

• Leibniz University Hannover (RTS)

Outline

- Introduction
- 3D Mapping with Mobile Robots
- Mobile Laser Scanning
 - Calibration
 - Semi-rigid Scan Matching
 - **Conclusion and Outlook**

Mobile Laser Scanning Systems

Experimental

Professional

State of the Art

- For all sensors determine the position and orientation on the vehicle (calibration)
- Data Acquisition
- Extract the trajectory of the vehicle from the sensor data (Kalman-Filter)
- "Unwind" the laser measurements with the trajectory to create a 3D point cloud.

ulius-Maximilians-

Automatic System Calibration

• Construct a calibration vector

$$\mathbf{C} = (a, w, \mathbf{W}_0, o_0, \dots, \mathbf{W}_n, o_n)$$

- Treat the "unwinding" as a function $f(M, \mathbf{C})$
- The point cloud represents samples from a probability density function

$$d(\mathbf{l}) = \frac{1}{n} \sum_{j}^{n} G(\mathbf{l} - \mathbf{p}_{j}, \sigma^{2} \mathbf{I})$$

• Simplified entropy measure

$$-\sum_{i}^{n}\sum_{j}^{n}G(\mathbf{p}_{i}-\mathbf{p}_{j},2\sigma^{2}\mathbf{I})$$

Efficient Calibration

- Evaluating the entropy is in O(n²)
- Reduction of the point cloud
 - n becomes smaller
 - Smaller contribution to the error function in the search space
- Reduction of point pairs
 - Consider only pairs with **minimal time difference**
 - Consider only closest points
- Minimization of the error function

$$\hat{\mathbf{C}} = \operatorname{argmax}_{\mathbf{C}} E(f(M, \mathbf{C}))$$
where $E(f(M, \mathbf{C})) = -\sum_{i}^{n} G(\mathbf{p}_{i} - \mathbf{q}_{i}, 2\sigma^{2}\mathbf{I})$

is in O(n log n) (~20 minutes with Powel's algorithm)

- Reference model: 3D plane model from terrestrial scanning
- Compare point cloud with model

Julius-Maximilians-

UNIVERSITÄT

RZBURG

- Ostia Antica in Rom
- Environment less structured
- No ground truth model available

Further Sources of Errors

no GPS "lousy" IMU

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Robotics and Telematics

bad GPS

no IMU

Semi-Rigid Registration

- Goal:
 - Optimize trajectory
 - No or only small time discretization (< 10 ms)
 - Ideal discretization at every point measurement
- Ansatz:
 - Extension of the global ICP algorithm / Graph-SLAM
- Modeling

VERSITÄT

- Trajectory $T = \{\mathbf{V}_0, \dots, \mathbf{V}_n\}$
- Every \mathbf{V}_i is a vehicle pose at time t_i
- IMU / odometry estimate $\mathbf{V}_i
 ightarrow \mathbf{V}_{i+1}$
- GPS estimate $\mathbf{V}_0
 ightarrow \mathbf{V}_i$

— Laser scanner / scan matching $\mathbf{V}_i
ightarrow \mathbf{V}_j$

Calculation of $\, \mathbf{V}_i ightarrow \mathbf{V}_j \,$

- "Unwind" the laser measurements with the trajectory to create an initial 3D point cloud.
- Compute correspondences using a modified nearestneighbor search
- Consider the following scenarios:

Optimization of the Trajectory

Global error function

$$W = \sum_{i} \sum_{j} (\bar{\mathbf{V}}_{i,j} - (\mathbf{V}'_i - \mathbf{V}'_j)) \mathbf{C}_{i,j}^{-1} (\bar{\mathbf{V}}_{i,j} - (\mathbf{V}'_i - \mathbf{V}'_j))$$

- Minimization by $(\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H}) \mathbf{V} = \mathbf{H}^T \mathbf{C}^{-1} \bar{\mathbf{V}}$
- Solving by Sparse Choleskey Decomposition by T. Davis
- Also possible: global ICP

Julius-Maximilians-

Overview: Algorithm Semi-Rigid SLAM

- 1. Calculate the pose estimates $\mathbf{V}_i o \mathbf{V}_{i+1}$ and $\mathbf{V}_0 o \mathbf{V}_i$
- 2. Extract a 3D point cloud from a current trajectory estimate and the system calibration
- 3. Calculate an oc-tree for storing the 3D points (including the time stamp)
- 4. Compute closest points and an estimate for $\mathbf{V}_i
 ightarrow \mathbf{V}_j$
- 5. Update the trajectory

lius-Maximilians-

6. Repeat step 2 – 5 until convergence

Data and analysis done by TopScan GmbH, Rheine (Dr. Joachim Lindenberger)

 Data and analysis done by TopScan GmbH, Rheine (Dr. Joachim Lindenberger)

WÜRZBURG

 Data and analysis done by TopScan GmbH, Rheine (Dr. Joachim Lindenberger)

• Acquired by Riegl GmbH in Salzburg

• Acquired by Riegl GmbH in Salzburg

Outline

- Introduction
- 3D Mapping with Mobile Robots
- Mobile Laser Scanning
 - Calibration
 - Semi-rigid Scan Matching
 - **Conclusion and Outlook**

Summary and Outlook

- Efficient algorithms and data structures for processing 3D point clouds
- Golbal consistent scan matching

➡ Bundle Adjustment for 3D Point Clouds

"Dense" method

Application: 3D Point Clouds at the Production Line

References

Publications available at

www.nuechti.de

• Videos are online on our youtube channel

www.youtube.com/channel/UC7HAqZXI-jvMmBwoi4vDUew

www.youtube.com/user/AutomationAtJacobs

www.youtube.com/user/AndreasNuechter

Large parts of our software is Open Source
 3DTK – The 3D Toolkit

http://slam6d.sourceforge.net

