

APD CdHgTe pour l'imagerie 3D: réalisation et perspectives

Johan Rothman 7/4/2014

Plan de l'exposé

- Imagerie 3D par la mesure du temps de vol d'une impulsion laser
- Photodiodes d'avalanche (APDs) CdHgTe pour l'imagerie 3D
- Réalisations
- Perspectives

Imagerie 3D par temps de vol (TOF)

- Estimation de la distance des objects par la mesure du temps de vol:
 - $\Delta_d = \Delta_{TOF}/2c : \Delta_{TOF} = 1 \text{ ns} \rightarrow \Delta_d = 16 \text{ cm}$
- Le signal de retour décroit avec le carré de la distance ~1/d²
 - Peu de photons à détecter
- La résolution temporelle /spatiale dépend du bande passante du détecteur (BW), le signal (S) et le bruit (N)
 - $\Delta d \sim \frac{N}{S} \frac{1}{BW}$

leti

Besoin de photo détection amplifié et rapide/ APD CdHgTe ?

Photodétection amplifié avec APDs CdHgTe

- M>100, F=1.1-1.3, Faible I_{obs} et dispersion
 - Record de conservation d'information (SNR) : QEFR ~60-90 %
 - APD III-V QEFR < 10- 30 % → ∆d plus important pour le même signal
 - Détection ultra sensible de l'uv/visible jusqu'au $\lambda_c = 2.2 10 \mu m$, $I_{obs} > 10 e/s !$
 - Compatible avec application matricielle
- Gap étroite → Bruit du détecteur (I_{obs}+ flux IR résiduel)
 - Limitation en température de fonctionnement et taille des diodes

- Le bruit généré par le détecteur limite le gain maximale utile (sensibilité) dans les APDs MCT
 - Il faut limiter la surface sensible, la température de fonctionnement et le temps d'observation (applications à BW max sont favorables)

Temps de réponse des APDs CdHgTe au CEA/Leti

Localized injection (APD center) T= 80 K

- -- M= 1.((6 V)
- -- M=5 (10 V)

-- M= 130 (18 V)

- Delayed response at high gain with constant RC =270 ps (BW=600 MHz)
 - Reduction of electron and holes velocities
 - Increased gain \rightarrow larger hole contribution over the total junction thickness
 - Temps de response limité par le couplage électrique : FWHM< 300 ps (BW~600 MHz)
- BW grande diode (200 μm) 40-220 MHz (limité par diffusion)

APDs CdHgTe pour imagerie active

- Le gain, la bande passante et le courant d'obscurité sont compatible avec l'imagerie active
 - MWIR @ 80 K
 - SWIR => 200 K
- 4 démonstrateurs permettant l'imagerie 3D ont été développés
 - Imagerie 3D en temps réel: Imageur multi-fonction 2D/3D 320x256 pas 30 μm
 - Imagerie 3D tomographique : Imageur 2D (gating) 385x288 au pas de 15 μm (en collaboration avec Sofradir)
 - Imagerie 3D en mode balayage: Mono-élément grande diamètre > 100 μm, refroidissement TEC
 - Imagerie 3D en comptage de photon: mono-élément ultrasensible

Perspectives

leti

Imageur multi-mode 2D/3D et thermique

- CTIA coupled one-shot TOF+R imaging (3D)
 - Pulse detection in C₁₀ (1)
 - Sample time sweep → TOF (2)
 - Switch to integrate the total light pulse in C₂₀ (3)

E. De Borniol, Oprical engineering, 5, 61305 (2012)

leti

Précision sur le temps de vol

Fluctuation spatiale après calibration sur deux points

- High signal (4300 photons, M=23): $\sigma_d = 9^{\circ} \text{ cm}^{\circ}$ (0.6 ms)
- Low signal (100 photons, M=124) : σ_d=45 cm (3.0 ns
 Fluctuations temporelles
- High signal (4300 photons, M=23): σ_d =11 cm (0.75 ns)
- Low signal (100 photons, M=124) : σ_d =40 cm (2.7 ns)
 - Lower signal introudces a level dependent delay
 - The delay can be corrected for in presence of simumtaneous 2D/3D detection
 - Need good SNR on the 2D signal: design error in the present detector (C₃ too big)

Lancer un ballon sur 10 m

Imageur active 2D à haute résolution 384x288, pas 15 μm, développé en collaboration avec SFD

Image reflective du scene dans Δt_{gate} Imagerie 3D en balayant Δt_{gate} Résolution lié à temps de monté/descente et la durée du gate

- Δt_{gate_min} =35 ns
- Temps de monté/descente ~ 3-5 ns
- Résolution : test réalisé à l'ISL 1/4/2014 ...

APDs CdHgTe pour la mesures de l'information temporelle (T_{op} =180-200 K, ϕ =100-200 µm)

System optimization/ Operating temperature (high/low) :

Signal \leftrightarrow BW \leftrightarrow TIA noise \leftrightarrow Surface \leftrightarrow gain $\leftrightarrow \lambda_c(x_{cd})$

	TIA-1 : Range finder, FSO	TIA-2 : Atmospheric LIDAR
Gain (kV/A)	40	350
BW (MHz)	400	20
Output Noise (mV)	1.5	2.0
i _n (pA/√Hz)	1.8	1.3
l _n (nA)	36.3	5.7

leti

Développement des photo détecteurs CdHgTe au | 12 CEA/LETP^{C1}31/21/2013

Single element HgCdTe APDs Detector

assembly characteristics

Parameter	APD3_TIA-1	APD1-TIA-2
BW TIA/APD (MHz)	350/60	20/NA
λ _c (μm)	3.14	2.9
φ _{detector} (μm)	160	200
Bias (V)	14.8	16
Gain (MV/W)	4.45	23
External QE (%)	57%	67
APD Gain	95	80
Output Noise (mV)	2.2	2.6
NEP (nW)	0.76	0.11
NEP (fW/vHz)	43	25.3
NEPh/TC (photons)	7.9	22.1

APD pour LIDAR CO2 développé dans le cadre d'un R&T CNES avec LMD

Performance DTOF APD_TIA-1 (Top=180 K, of=160 μm)

Impulsion laser court ~FWHM~50 ps, signal équivalent à 100 photons (détecteur optimisé)

- σ_{TOF} =0.2 ns (σ_d =3 cm) pour une détection de seuil simple
- σ_{TOF} augmente pour des impulsion plus longue et avec moins de photons
 - Limite de détection d'impulsion ~ 40 photons sTOF~1-2 ns

Application demonstration with APD2-TIA-1 (160µ) Laboratory test for Lunar Laser Com. Demo. (LLCD)

Uncorrected and corrected error rates measured at OGS at Tenerife

Premier Connexion lune – APD CdHgTe établie le 2/4/2014 (mode 5)

Mode 4 démontré le 3/4/2014

Recieving 80 Mbit/s (40 Mbit/s decoded error free) data from the moon 2-3 Avril 2014

Imagerie 3D en mode comptage de photon avec APD CdHgTe

Amplified source follower: Integration on APD capa.

Ampli faible bruit hybridé directement sur l'APD (Design LETI) Bruit/TC = 10-20 électrons BW= 7 MHz

Datation par seuillage ou Ajustement de front d'onde (FPGA)

Peformance comtpage de photons CdHgTe APDs

Ampli faible bruit (Design LETI) Bruit/TC = 10-20 électrons BW= 7 MHz

Résidual thermal flux avec APD MWIR (et SWIR) ADV=0 (flux zéro)

Cold filter

Coups d'obscurité avec APD MWIR

Datation mode comptage de photons BW < 7MHz (sans préamplificateur)

- Δ_{TOF} proche de 1 ns pour moins de 20 photons
- BW>100 MHz avec une sensibilité similaire a été designé
 - $\Delta_{\text{TOF}} \rightarrow 100 \text{ ps}$
- Architecture compatible plan focaux faible pas

Perspectives imagerie 3D APD CdHgTe

• BW peut excéder GHz $\rightarrow \Delta_{TOF}$ < 100 ps

Mode comptage de photon

- T_{op}=80-150 K
- BW > 100 MHz, D_{TOF}<1 ns</p>
- Multi –écho (en fonction du format)

Plan focaux

- 2D/3D
 - Pas 15 μm, grand format
 - Deux échos max (en fonction du pas)
 - Seul de déclenchement 1 − 10 photons → comptage de photon
 - BW <GHz $\rightarrow \Delta_{TOF}$ min 100 ps
 - En fonction de la sensibilité
- Compatible T_{op}~ 200 K !
- Multi-mode thermique/2D/3D

ein

LABORATOIRE D'ÉLECTRONIQUE **ET DE TECHNOLOGIES DEL'INFORMATION**

Merci de votre attention

